14 research outputs found

    Hydrogen Fluoride in High-Mass Star-forming Regions

    Get PDF
    Hydrogen fluoride has been established to be an excellent tracer of molecular hydrogen in diffuse clouds. In denser environments, however, the HF abundance has been shown to be approximately two orders of magnitude lower. We present Herschel/HIFI observations of HF J=1-0 toward two high-mass star formation sites, NGC6334 I and AFGL 2591. In NGC6334 I the HF line is seen in absorption in foreground clouds and the source itself, while in AFGL 2591 HF is partially in emission. We find an HF abundance with respect to H2 of 1.5e-8 in the diffuse foreground clouds, whereas in the denser parts of NGC6334 I, we derive a lower limit on the HF abundance of 5e-10. Lower HF abundances in dense clouds are most likely caused by freeze out of HF molecules onto dust grains in high-density gas. In AFGL 2591, the view of the hot core is obstructed by absorption in the massive outflow, in which HF is also very abundant 3.6e-8) due to the desorption by sputtering. These observations provide further evidence that the chemistry of interstellar fluorine is controlled by freeze out onto gas grains.Comment: accepted in Ap

    Herschel observations of EXtraordinary Sources: Analysis of the full Herschel/HIFI molecular line survey of Sagittarius B2(N)

    Get PDF
    A sensitive broadband molecular line survey of the Sagittarius B2(N) star-forming region has been obtained with the HIFI instrument on the Herschel Space Observatory, offering the first high-spectral resolution look at this well-studied source in a wavelength region largely inaccessible from the ground (625-157 um). From the roughly 8,000 spectral features in the survey, a total of 72 isotopologues arising from 44 different molecules have been identified, ranging from light hydrides to complex organics, and arising from a variety of environments from cold and diffuse to hot and dense gas. We present an LTE model to the spectral signatures of each molecule, constraining the source sizes for hot core species with complementary SMA interferometric observations, and assuming that molecules with related functional group composition are cospatial. For each molecule, a single model is given to fit all of the emission and absorption features of that species across the entire 480-1910 GHz spectral range, accounting for multiple temperature and velocity components when needed to describe the spectrum. As with other HIFI surveys toward massive star forming regions, methanol is found to contribute more integrated line intensity to the spectrum than any other species. We discuss the molecular abundances derived for the hot core, where the local thermodynamic equilibrium approximation is generally found to describe the spectrum well, in comparison to abundances derived for the same molecules in the Orion KL region from a similar HIFI survey.Comment: Accepted to ApJ. 64 pages, 14 figures. Truncated abstrac

    The problematic use of Information and Communication Technologies (ICT) in adolescents by the cross sectional JOITIC study

    Get PDF
    Background: The emerging field of Information and Communications Technology (ICT) has brought about new interaction styles. Its excessive use may lead to addictive behaviours. The objective is to determine the prevalence of the problematic use of ICT such as Internet, mobile phones and video games, among adolescents enrolled in mandatory Secondary Education (ESO in Spanish) and to examine associated factors. Methods: Cross sectional, multi-centric descriptive study. Population: 5538 students enrolled in years one to four of ESO at 28 schools in the Vallès Occidental region (Barcelona, Spain). Data collection: self-administered socio-demographic and ICT access questionnaire, and validated questionnaires on experiences related to the use of the Internet, mobile phones and video games (CERI, CERM, CERV). Results: Questionnaires were collected from 5,538 adolescents between the ages of 12 and 20 (77.3 % of the total response), 48.6 % were females. Problematic use of the Internet was observed in 13.6 % of the surveyed individuals; problematic use of mobile phones in 2.4 % and problematic use in video games in 6.2 %. Problematic Internet use was associated with female students, tobacco consumption, a background of binge drinking, the use of cannabis or other drugs, poor academic performance, poor family relationships and an intensive use of the computer. Factors associated with the problematic use of mobile phones were the consumption of other drugs and an intensive use of these devices. Frequent problems with video game use have been associated with male students, the consumption of other drugs, poor academic performance, poor family relationships and an intensive use of these games. Conclusions: This study offers information on the prevalence of addictive behaviours of the Internet, mobile phones and video game use. The problematic use of these ICT devices has been related to the consumption of drugs, poor academic performance and poor family relationships. This intensive use may constitute a risk marker for ICT addictio

    OBSERVATIONS OF INTERSTELLAR HYDROGEN FLUORIDE AND HYDROGEN CHLORIDE IN THE GALAXY

    No full text
    Author Institution: California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125-4700, USA; Johns Hopkins University, USAWe present Herschel/HIFI observations of interstellar hydrogen chloride (HCl) and hydrogen fluoride (HF) along the line-of-sight towards Galactic sources with strong submillimeter continuum emission from the PRISMAS and HEXOS GT KP. The halogen-containing molecules are of special interest because of their unique thermochemistry and their important role as tracers of the neutral ISM. The detection of foreground absorption by HF J = 1--0 transition line in each source probes the distribution of HF throughout the Milky Way, in diffuse clouds with varying values of the visual extinction, as a potential valuable surrogate for molecular hydrogen. For the optically thin absorption components we calculate the column densities of HF. We find that, in many of the background clouds, the abundances of HF with respect to H2_2 is consistent with the theoretical prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Observations of hydrogen chloride isotopologues, H35^{35}Cl and H37^{37}Cl J = 1--0 transition line at different galactocentric distances provide insights of how elemental abundances change with location in the Galaxy. We model the HCl observations with a non-LTE radiative transfer model to derive gas densities and HCl column densities for sources with HCl emission. Interstellar HCl abundances and isotopic ratios [Cl35Cl^{35}/Cl37Cl^{37}] are essential for improving our understanding of stellar nucleosynthesis and global chemical enrichment and evolution in the Galaxy

    Herschel observations of interstellar Chloronium. II. Detections toward G29.96-0.02, W49N, W51, AND W3(OH), and determinations of the ortho-to-para and 35Cl/37Cl isotopic ratios

    No full text
    We report additional detections of the chloronium molecular ion, H2Cl+, toward four bright submillimeter continuum sources: G29.96-0.02, W49N, W51, and W3(OH). With the use of the HIFI instrument on board the Herschel Space Observatory, we observed the 212101{2}_{12}-{1}_{01} transition of ortho-H235{}_{2}^{35}Cl+ at 781.627 GHz in absorption toward all four sources. Much of the detected absorption arises in diffuse foreground clouds that are unassociated with the background continuum sources and in which our best estimates of the N(H2Cl+)/N(H)N({{\rm{H}}}_{2}{\mathrm{Cl}}^{+})/N({\rm{H}}) ratio lie in the range (0.9–4.8) ×  109\times \;{10}^{-9}. These chloronium abundances relative to atomic hydrogen can exceed the predictions of current astrochemical models by up to a factor of 5. Toward W49N, we have also detected the 212101{2}_{12}-{1}_{01} transition of ortho-H237{}_{2}^{37}Cl+ at 780.053 GHz and the 111000{1}_{11}-{0}_{00} transition of para-H235{}_{2}^{35}Cl+ at 485.418 GHz. These observations imply H235{{\rm{H}}}_{2}^{35}Cl+/H237{}_{2}^{37}Cl+ column density ratios that are consistent with the solar system 35Cl/37Cl isotopic ratio of 3.1, and chloronium ortho-to-para ratios consistent with 3, the ratio of spin statistical weights.Support for this work was provided by NASA through an award issued by JPL/Caltech. J.R.G. thanks MINECO for funding support under grants CSD2009-00038, AYA2009-07304 and AYA2012-32032

    Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6-0.4 (W31C), W49N, and W51

    Get PDF
    We report the detection of the ground state N, J = 1, 3/2 -> 1, 1/2 doublet of the methylidyne radical CH at similar to 532 GHz and similar to 536 GHz with the Herschel/ HIFI instrument along the sight-line to the massive star-forming regions G10.6-0.4 (W31C), W49N, and W51. While the molecular cores associated with these massive star-forming regions show emission lines, clouds in the diffuse interstellar medium are detected in absorption against the strong submillimeter background. The combination of hyperfine structure with emission and absorption results in complex profiles, with overlap of the different hyperfine components. The opacities of most of the CH absorption features are linearly correlated with those of CCH, CN, and HCO+ in the same velocity intervals. In specific narrow velocity intervals, the opacities of CN and HCO+ deviate from the mean trends, giving rise to more opaque absorption features. We propose that CCH can be used as another tracer of the molecular gas in the absence of better tracers, with [CCH]/[H2] similar to 3.2 +/- 1.1 x 10-8. The observed [CN]/[CH], [CCH]/[CH] abundance ratios suggest that the bulk of the diffuse matter along the lines of sight has gas densities nH = n(H) + 2n(H2) ranging between 100 and 1000 cm-3)

    CH+(1-0) and 13CH+(1-0) absorption lines in the direction of massive star-forming regions

    No full text
    We report the detection of the ground-state rotational transition of the methylidyne cation CH+ and its isotopologue 13CH+ toward the remote massive star-forming regions W33A, W49N, and W51 with the HIFI instrument onboard the Herschel satellite. Both lines are seen only in absorption against the dust continuum emission of the star-forming regions. The CH+ absorption is saturated over almost the entire velocity ranges sampled by the lines-of-sight that include gas associated with the star-forming regions (SFR) and Galactic foreground material. The CH+ column densities are inferred from the optically thin components. A lower limit of the isotopic ratio [ 12CH+] /[ 13CH+] > 35.5 is derived from the absorptions of foreground material toward W49N. The column density ratio, N(CH+)/N(HCO+), is found to vary by at least a factor 10, between 4 and >40, in the Galactic foreground material. Line-of-sight 12CH+ average abundances relative to total hydrogen are estimated. Their average value, N(CH+)/NH > 2.6×10-8, is higher than that observed in the solar neighborhood and confirms the high abundances of CH+ in the Galactic interstellar medium. We compare this result to the predictions of turbulent dissipation regions (TDR) models and find that these high abundances can be reproduced for the inner Galaxy conditions. It is remarkable that the range of predicted N(CH+)/N(HCO+) ratios, from 1 to ~50, is comparable to that observed. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 6) is only available in electronic form at http://www.aanda.or
    corecore